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Physicochemical Descriptors in Property-Based Drug Design
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Abstract: The contribution of physicochemical descriptors to lipophilicity, water solubility, and intestinal
absorption and oral bioavailability in humans is considered.

Partitioning in the octanol/water system is presented as a competition between two opposing effects: volume
and hydrogen bond acceptor ability. Water solubilities of liquid compounds are roughly equal to their
reciprocal logP values. However, there is also a detectable contribution of H-bond donor ability to water
solubility. The main problem in predicting the solubilities of solid chemicals and drugs is the estimation of
their crystal lattice energies. QSAR approaches that add terms such as melting point, and the product of H-bond
donor and acceptor parameters are not sufficient to make these predictions practical.

Human intestinal absorption for passively transported drugs is almost completely correlated with hydration
processes that are determined by H-bond acceptor and donor abilities.

It is emphasized that structural features of drug molecules have significant influences on their properties.
Classic QSAR approaches are not enough to create stable, predictive models for diverse drugs. A combination
of Similarity and QSAR approaches is one possibility to take all physicochemical properties in addition to
structural features into account.
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INTRODUCTION

Although physicochemical properties as they relate to
pharmacokinetic and biopharmaceutical properties were
almost completely neglected in earlier efforts at drugs
design, it is now obvious that they are important for the
discovery of prospective new drug candidates. As a result a
new tool, Property-Based Design in Medicinal Chemistry,
is currently being intensively developed [1].

The concepts of quantitative structure-property and
structure-activity relationships (QSPR and QSAR), are the
main platforms for optimizing a drug candidate’s properties.
They include two main elements: the description of structure
by means of independent parameters (descriptors) and
chemometric tools. The latter includes many different
regression/correlation approaches, methods of pattern
recognition, classification, and experimental design [2].

This short review deals with physicochemical descriptors
that contribute to transport and distribution properties of
drugs in the human organism, and discusses possibilities to
create stable, predictive models based on them.

LIPOPHILICITY

Lipophilicity is the affinity of drug molecules for a
lipophilic environment, and is often considered as a key
property in the transport processes of drugs in human
beings. These include intestinal absorption, membrane
permeability, protein binding, and distribution among
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different tissues [3]. It is usually defined as the partition
coefficient (P) of a compound distributed between octanol
and water phases, and is commonly expressed as logP, its
logarithmic form.

Many approaches to calculate lipophilicity have been
proposed since the 1960s, beginning with the π-system
developed by Hansch and Fujita [4], and the initial fragment
approach of Rekker [5]. Since then, modern approaches
based on neural network interpretations of structural and
quantum chemical descriptors have come to the fore [6-9].
Current commercially available programs to predict
lipophilicity are described here in [10].

There are a lot of different calculation procedures to
estimate octanol-water partition coefficients that have been
used with varying degrees of success and applicability
[10,11]. For the most part, these procedures are based on
fragment or atom contributions and are outside the scope of
this review. As to QSAR models that are based on
physicochemical descriptors it is necessary to mention [11]
the application of molecular weight, molecular volume,
solvatochromic parameters, molecular surface area, solvent-
accessible surface area, atomic surface tensions, molecular
surface properties, molecular polarizability, different
molecular orbital descriptors (charge density, electrostatic
potentials, highest occupied and lowest unoccupied
molecular orbital energies) and other properties (ionization
potentials, positive and negative electrostatic potentials, and
dipole moments) [12-20].

Currently, thermodynamic approaches for describing
molecular properties (including lipophilicity) are being
developed by three groups: M.Abraham [21], P.Ruelle [22]
and O.Raevsky [23]. All of these methods are directly
connected by their application of thermodynamic properties
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to various intermolecular interactions. The differences in the
approaches relate to the different number of descriptors used
in the training sets, and to the type of QSAR models.

Five molecular descriptors are used in the solvation
equation of Kamlet, Taft and Abraham: (1) E – excess molar
refraction, which models dispersion force interactions arising
from the polarizability of pi- and n-electrons; (2) S- solute
polarity/polarizability (due to solute-solvent interactions
between bond dipoles and induced dipoles); (3) A – solute
H-bond acidity; (4) B – solute H-bond basicity; and (5) V –
McGowan characteristic molar volume [24]. The H-bonding
parameters are summation terms relevant to the behavior of
solutes in solvents. The acidity "A" relates to the strength
and number of H-bonds formed by donor groups in the
solute when they interact with lone pairs of acceptor groups
in solvent molecules. The basicity "B" relates to the strength
and number of H-bonds formed by the lone pairs of acceptor
groups in the solute when they interact with donor solvents.
These descriptors are based on the H-bond scales that refer to
the overall or summation H-bond acidity and basicity
effects.

Distribution in the octanol-water system was
characterized in framework of this approach by equation (1)
[25]:

logP ow = 0.088 +0.562 E –1.054 S –0.032 A –3.460 B
+3.814 V (1)

 n=613, R=0.9974, sd=0.116, F=23161.6

where n is number of compounds, R is the correlation
coefficient, sd is the standard deviation, and F is the Fisher
criterion.

Some words about statistical criteria that are too good:
the standard deviation for this training set (which was
created on the basis of different measurements by various
authors) is less than even the experimental error of
determination (± 0.5 logP unit [26]). One reason such a
situation (as indicated in [1]) could arise is the mutual
intercorrelation of descriptors "leading to over-optimistic
statistics". Another reason for this good result may be the
lack of diversity in the training set. The application of the
solvation approach to the data extracted from the
MedChem97 database gave much more modest result:
n=8844, r=0.909, RMS (root-mean-square error) = 0.674, F
= 8416 [27].

In accordance with Mobil Order and Disorder Theory five
components at the most contribute to the Gibbs free energy
of partitioning of a solute in a biphasic system of two
essentially immiscible solvents [22]:

 logP = ∆B + ∆D + ∆F + ∆O + ∆OH (2)

where the entropy of mixing term, ∆B, gives information
about differences between the two phases in the entropy of
the solute/solvent exchange; the hydrophobic effect- term,
∆F, accounts for differences in the propensities of the
solvent phases to squeeze the solute out of the solution; the
two H-bond interaction-related terms, ∆O and ∆OH express
differences in the strengths of the H-bonds that bind the
solute and solvent molecules in each phase; the term ∆D is
similar to the two previous ones, but accounts for non-
specific forces only. The application of eq. (2) to a set of

482 compounds resulted in an adequate correlation between
experimental and calculated values; the standard deviation of
the computed logP values was at the level of 0.50.

The thermodynamic approach followed by Raevsky’s
group considers the property P to be based on contributions
from three main intermolecular interactions: steric,
electrostatic and hydrogen bonding [28,29]:

P = f (α , ∑q, ∑C) (3)

where α is molecular polarizability (a volume-related term),
∑q is a sum of partial atomic charges (an electrostatics-
related term) in a molecule, ∑C comprises free energy H-
bonding factors [30]. All these descriptors are calculated by
program package HYBOT (HYdrogen BOnd
Thermodynamics) [31]. Besides polarizability and partial
atomic charges, the current version of this program has the
possibility to calculate enthalpy and free energy as well as
overall H-bond factors by searching for nearest neighbors in
a data bases containing 250 000 structural fragments.
Recently, original hydrogen bond potentials based on
hydrogen bond factors were proposed [32] as new 3-D H-
bond descriptors [33].

Physicochemical models of lipophilicity based on
volume-related terms and polarities or hydrogen bonding
capacities of solutes were first described in the 1980s [34-
36]. In 1995, an equation was published [37] that used
molecular volume (MV) and hydrogen bonding to describe
the octanol/water partition coefficients for 38 neutral
carbonyl and hydroxyl compounds. For the hydrogen
bonding part, the authors used free energy H-bond acceptor
(∑Ca) and donor factors (∑Cd). Later they changed from
using molecular volume to using molecular polarizability
(α), and obtained a good correlation for logP on about three
thousand simple compounds [38,39]:

logP = 0.267 α  -1.00 ∑ Ca (4)

n=2850, r=0.970, s=0.23

Eq. (4) was used for logP calculations in the program
SLIPPER-98 [40].

There are two important features of eq. (4) to note:

- In spite of being an essential part of the training set,
H-bond donor factors (∑Cd) made no contribution in
estimating logP.

- The regression equation has a zero intercept. Hence,
in the case of a compound where the magnitudes of
the terms are equal, the compound will be distributed
equally between both phases. Because, in this case,
the terms have opposite signs they cancel each other,
and thus logP equals zero (0), and therefore P equals
one (1). Polarizability can have only positive values;
hence, it can only make a positive contribution to
logP. Thus, increasing polarizability leads to higher
concentrations of the solute in the octanol phase. H-
bond acceptor factors also can only be positive, but
because a negative sign proceeds its term in the
equation, H-bond acceptors can only increase the
solute’s distribution in water phase.

Although the application of eq. (4) in the program
SLIPPER-98 demonstrated adequate predictive power for
logP values, the predictions of logP for some drug
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molecules containing several functional groups deviated
significantly from those observed. Those deviations were
approximately the same for related chemical structures. So it
was reasonable to suppose that structural features of
molecules also influence a drug’s distribution in octanol-
water system.

There are many approaches for selecting related chemical
structures. These include a chemist’s intuition to select
compounds with similar structural frameworks, and special
QSAR procedures such as SIMCA/PLS [41], DIREM [42],
and different types of cluster analysis [2,43]. The present
state of Similarity concepts permit one to formalize
quantitative measures of relatedness among chemical
structures [44].

An original combination of Similarity and QSAR for
creating stable, predictive models of lipophilicity was
recently proposed [45]. In this work four approaches were
considered:

1. The application of eq. (4).

2. The logP value of the nearest neighbor in a large
training set was used as the calculated value for the
compound-of-interest [46].

3. The mean logP value of three nearest neighbors was
used as the calculated value for compound-of-interest
[47].

4. LogP values of the nearest neighbors were used only
in the first step. In addition, the contribution to
lipophilicity arising from differences in
polarizabilities and H-bond acceptor factors between
the compound-of-interest and its nearest neighbors
were also taken into consideration. In this case the eq.
(5) was used employing coefficient values from eq.
(4):

  N
logPi = Σ [((logPj + 0.267(αi - α j) - 1.00 (Cai -Caj)]/N (5)

j=1

where index i indicates the compound-of-interest, index j
indicates a near neighbor; and N is the number of closely
related structures used.

For 48 drugs, the statistical criteria for the correlation
between experimental and calculated logP values on the
basis of eq.(5) are better than those obtained on the same
drugs using the methods tested by Mannhold and Dross
[48]:

logPexp=1.012 (±0.019) logPcalc(eq.(5)) (6)

N=48, r=0.964, sd=0.419, F=597

Later eq (5) was used to calculate logP values for a
database containing 10 937 compounds and drugs in the
program SLIPPER-2001 [49]. The correlation coefficient
found between experimental and calculated logP was 0.972.
The results of such calculations for 24 drugs studied in [49]
are presented in Table 1.

Some important points to remember:

- logP refers to the neutral state of molecule. In the
presence of acidic and/or basic groups the distribution
becomes pH dependent. The pH dependent

distribution coefficient logD is related to logP
through the ionization constant (pKa) [50,51].
Examples of procedures for calculating logD on the
basis of physicochemical descriptors are presented in
[52,53].

- logP and logD are widely used in QSAR to study
permeability, absorption and drug distribution in
organisms. However, it was recently found that
hydrogen-bonding ability is the main contributor to
passive transport [1]. (For a more detailed discussion
look in the Chapter devoted to intestinal absorption).
Besides, as demonstrated above, logP is a composite
descriptor that includes, in hidden form, volume-
related and H-bonding terms. The octanol-water
system should be considered only as one model to
test different descriptors and methodological
approaches. Other systems (in particularly
immobilized artificial membranes [54-56]) are now
proposed as alternatives to the octanol-water system.

WATER SOLUBILITY

Aqueous solubility is an important property that
influences a drug’s release, permeability through different
biologic membranes, transport and absorption in humans.
Thus, there is an increasing need develop methods to
estimate water solubility from molecular structure and
calculable physicochemical descriptors that relate to ADMET
(absorption, distribution, metabolism, excretion and
toxicity).

In 1968, on the basis of aqueous solubility data for 150
liquid compounds, Hansch already logically proposed that
solubility and the partition coefficient are reciprocally related
[57]. Yalkovsky et al. developed the idea further, and
proposed the following quantitative relationship between
solubility and partition coefficient values for liquid
compounds [58]:

log S =-1.07 log P +0.67 (7)

r=0.954, sd = 0.344

A few years ago, investigations [37-40] of logP for small
sets of chemicals showed that the octanol-water partition
coefficient is sufficiently described by ΣCa, a quantitative
descriptor of hydrogen bonding (HB) acceptor strength (sum
over all HB accepting substructures within a molecule), and
by a bulk effect descriptor such as molar volume, MV, or
polarizability (α). Interestingly, the descriptor of HB donor
strength, ΣCd, was shown to be not significant. Clearly, if
logP can be quantitatively described by ΣCa and α, then the
same can be expected for solubility logS. This was recently
confirmed by a correlation using a training set of 630 liquid
compounds [59]:

logS = 0.578(±0.133) – 0.305(±0.010)α  +1.155(±0.048)
ΣCa (8)

n = 630 r = 0.936 s = 0.586 q = 0.935

However already with 45 neutral polar liquid
compounds, Raevsky showed [38] that besides
polarizability, H-bond acceptor factors, and hydrogen bond
donor factors (Σ Cd ) also influence water solubility. Later,
the training set was increased to 142 liquids [39]. Because
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Table 1. Calculations Results of Lipophilicity, Solubility and Human Intestinal Absorption Prediction for 24 Drugs by means
of Program Package SLIIPER-2001[49]

NN Name αααα ∑∑∑∑Ca ∑∑∑∑Cd logPcalc logPexp logScalc logSexp Facalc Faexp

1nn 2nn 3nn 1nn 2nn 3nn 1nn 2nn 3nn

1 acetaminophen 16.0 4.0 -4.5 0.73 0.44 0.33 0.51 -0.82 –0.89 –0.86 –1.03 0.92 0.93 0.83 0.80

2 caffeine 19.4 5.4 0.0 -0.26 -0.10 0.04 -0.07 -0.42 -0.38 -0.32 -0.95 0.99 0.88 0.92 0.99

3 corticosterone 37.6 6.8 -3.3 1.48 1.46 2.05 1.94 -1.66 -3.35 -3.27 -3.24 0.99 1.00 0.99 0.99

4 dapsone 26.9 5.8 -6.5 1.21 1.34 1.39 0.97 -3.57 -3.53 -3.30 -2.80 0.99 0.97 0.95 0.93

5 digitoxin 77.1 16.5 -7.7 2.64 2.67 2.18 1.74 -5.67 -5.05 -4.76 -5.29 0.96 0.89 0.88 0.90

6 flurbiprofen 25.9 2.9 -2.8 3.58 3.68 3.75 4.16 -3.21 -3.45 -3.44 -4.50 0.99 0.99 0.97 0.92

7 imipramine 35.0 3.9 0.0 4.74 4.60 4.74 4.80 -4.76 -4.30 -4.57 -4.19 1.00 0.94 0.92 1.00

8 lidocaine 28.1 4.8 -2.5 1.64 2.38 2.34 2.26 -1.24 -0.97 -1.63 -1.75 0.52 0.44 0.43 0.35

9 mannitol 15.6 8.5 -9.4 -3.59 -3.88 -4.05 –3.10 -1.06 -2.01 -0.68 -0.03 0.02 0.03 0.22 0.26

10 metronidazole 15.7 4.3 -1.6 -1.17 -0.53 -0.49 -0.02 -2.01 -0.93 -0.41 -1.22 0.98 0.99 0.98 0.99

11 morphine 29.9 6.1 -2.9 0.58 0.44 0.67 0.76 -4.21 -3.31 -2.79 -3.28 0.27 0.17 0.28 0.24

12 oxazepam 29.9 6.2 -4.3 1.94 1.70 1.88 2.24 -3.70 -3.69 -3.79 -3.95 0.93 0.76 0.82 0.97

13 phenobarbital 24.1 5.0 -3.4 2.31 1.80 1.65 1.47 -2.41 -2.16 -1.97 -2.33 0.82 0.79 0.86 0.99

14 phenitoin 28.1 5.8 -3.7 2.29 2.31 2.27 2.47 -3.23 -4.08 -3.99 -3.99 0.90 0.89 0.81 0.90

15 prednisolone 38.0 8.1 -5.1 0.17 0.93 1.31 1.62 -2.43 -2.92 -3.11 -3.18 0.81 0.87 0.81 0.99

16 progesterone 36.3 4.2 0.0 3.76 3.68 3.73 3.87 -4.72 -4.65 -4.67 -4.42 0.99 0.77 0.84 0.91

17 quinidine 37.7 6.7 -1.5 3.39 2.66 2.84 3.44 -3.15 -2.79 -3.26 -3.12 0.74 0.78 0.84 0.80

18 salicylic acid 13.0 1.4 -4.8 1.82 1.92 2.07 2.26 -0.14 -1.17 -1.60 -1.89 0.99 0.97 0.97 0.99

19 spironolactone 44.2 5.7 0.0 4.32 2.98 2.86 2.78 -5.30 -5.26 -5.26 -4.30 0.73 0.83 0.57 0.25

20 sulfadiazine 25.5 7.2 -5.3 -0.17 -0.15 0.24 -0.09 -2.49 -2.82 -2.58 -3.40 0.92 0.91 0.91 0.98

21 sulfisoxazole 26.6 6.1 -5.3 2.65 1.15 1.02 1.01 -3.43 -3.07 -2.75 -3.02 0.97 0.98 0.98 0.96

22 testosterone 33.1 3.8 -1.4 3.42 3.17 3.11 3.32 -3.48 -3.49 -4.10 -4.08 0.84 0.90 0.91 0.98

23 theophylline 17.6 5.2 -2.1 0.42 0.31 0.30 -0.02 -2.76 -1.99 -1.78 -1.36 0.97 0.59 0.73 0.96

24 tolbutamide 28.4 5.1 -3.7 2.06 2.21 2.45 2.34 -3.64 -3.51 -3.51 -3.55 0.81 0.94 0.94 0.93

all ΣCd values obtained from HYBOT have negative values,
the authors recently used absolute values Σ Cd in this
investigation; more positive Σ Cd  values indicate stronger
HB donor effects. The following equation was obtained [59]:

logS = 0.434(± 0.124) – 0.298(± 0 . 0 0 8 8 ) α
+1.090(±0.046)ΣCa +0.304(±0.054)Σ Cd (9)

n = 630 r = 0.947 s = 0.536 q = 0.945

Application of available experimental logP values for the
chemicals from this training set gave the equations:

logS = 0.66(±0.06) – 1.12(±0.02)log P           (10)

n = 365 r = 0.941 s = 0.50

logS = 0.54(± 0.06) – 1.09(± 0.03)log P +
0.15(±0.03)Σ Cd           (11)

n = 365 r = 0.945 s = 0.48

Obviously, H-bond donor ability is a significant
descriptor of logS. Thus, an important part of the solute-
solvent interaction was neglected in correlations of logS
with logP. According to eq. (9), solubility in water is
expected to increase with increasing HB effects and to

decrease with increasing α, the steric bulk effect for solutes
(cavity formation in water).

In cases of solid chemicals and drugs, the significant
contribution of crystal lattice energy to solubility is
important. Unfortunately, there are many studies where the
training sets contain both liquids and solids, and where the
contribution of crystal lattice energy to solubility is not
directly considered. Under such conditions the real
relationships between molecular structure and solubility can
be masked. Jurs et.al [60-63] published a series of papers on
aqueous solubility in which the mathematical models were
based on different topological, geometrical and electronic
descriptors in a framework of neural network applications. In
particular, this group presented multiple linear regression
and computational neural network models for three training
sets (containing 176 compounds having one or more
nitrogen atoms with some oxygen, 223 compounds having
one or more oxygen atoms with no nitrogen, and 399
compounds from the two previous sets). Many types of
descriptors were considered including various topological
and geometric descriptors, path counts, distance edge
between different carbon atoms, sum of E-state values over
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all heteroatoms, shadow area on YZ plane, partial negative
surface area, sum of charges on all donable hydrogen atoms,
first and third geometric moment, and cube root of the
gravitation index over atom pairs [63]. In similar
publications molecular topology was used to predict
solubility by means of neural network modeling [64-67].
Many different physicochemical descriptors were used in
linear regression analyses and non-linear relationships based
on artificial neural networks to calculate water solubility.
These included LSER descriptors [68], molecular volume,
partial atomic charges, fractional hydrogen donor surface area
[69-71], molecular weight, log P, polar surface area (PSA)
[72], molecular polarizability [73], dipole moment,
moments of inertia, ionization potential, heat of formation,
total energy, electronic energy and other descriptors
calculated by the PM3 method [74], molecular refractivity,
number of hydrophilic rotatable bonds, number of H-bond
donors and/or acceptors [75], molecular weight and the set of
electrotopological E-state indices [76], about 100 descriptors
emphasizing surface properties [77], and a set of 32 Radial
Distribution Function code values [78]. A Monte Carlo
simulation of water solubility was presented in [79]. A
recent review devoted to solubility calculation methods is
presented in [80]. Over time, the number of compounds and
drugs included in training sets has increased. For example,
3351 compounds were included in the study [75].
Nevertheless, in spite of good statistical criteria for
correlations between calculated solubility values and
experimental ones, the chance to estimate solubilities
accurately is questionable because of the large number of
parameters and complex architectures used in the neural
networks.

Different approaches are being developed to take the
crystal lattice energy contribution to solubility into account
directly. Yalkowsky et al proposed a "General Solubility
Equation" (GSE) [81- 85]:

log Sw = 0.5 – log Pow – 0.01(MP-25) (12)

where MP is the melting point in C°. If the solute melts
below 25 C°, its melting point is set equal to 25 C° so that
the melting point term vanishes. The following assumptions
are used in the GSE [83]: (1) the reduction in solubility due
to the crystallinity of the solute is described by the van’t
Hoff equation; (2) the entropy of melting for most organic
compounds is approximated by Walden’s rule; (3) for liquid
solutes, the octanol-water partition coefficient is
approximately equal to the octanol-water solubility ratio; (4)
most organic liquids are completely miscible with octanol;
and (5) pure octanol has a molarity of 6.3. The application
of GSE by the authors gave an average absolute error at the
level of 0.55 log S units and a root-mean-square error at the
level of 0.76 log S unit for the 380 compounds tested [85].
Next training set contained already 1026 compounds
including 497 liquids and application of GSE gave even
better statistic criteria [86]. However, recent verification of
eq. (12) with a training set containing 752 only solid
compounds and drugs in a correlation with a forced zero
intercept between experimental and calculated values gave
rather modest results [87]:

log Sexp = 1.00(±0.01) log Seq(12) (13)

n=752, R=0.873, s=1.01

Based on clustering, a detailed correlation analysis of
water solubility with the octanol-water partition coefficient
and the melting point was presented in [88]. While eq (12)
gives important insights into the physical processes needed
for compounds to dissolve, it fails as a predictive tool for
compounds conceived but not yet made, an important aspect
for virtual libraries. The problem is that to know its logPow
and MP, a compound must first be prepared before these
properties can be measured. The situation for logPow is not
critical because good estimates can be made as indicated in
the previous section. However, there is at present no reliable
way to predict MP.

An "Amended Solvation Energy Relationship" was
proposed to take the crystal lattice energy contribution into
account [89]. The authors incorporated in their solvation
equation a term that supposedly reflects intermolecular
interactions in pure liquids or solids: the product of H-bond
acidity and H-bond basicity descriptors. Although the
inclusion of this term led to an improved correlation, one
needs to evaluate this new composite descriptor with others
in the equation, in particular with those descriptors
associated with H-bond acidity and basicity. For example,
the correlation matrix of H-bond factors for about 2000
chemicals and drugs shows an intercorrelation between the
product H-bond acceptor and H-bond donor factors and H-
bond donor factors alone on the order of r = 0.90 [87].

Other approaches to calculating solubility using terms
directly connected to crystal lattice energy were proposed in
the framework of Mobil Order Theory (MOT) [90-93] and
COSMO-RS (the conductor-like screening model for real
solvents) [94]. They gave enough good results. However, as
noted in [89] "the method (MOT) requires not only the
entropy of fusion of solid solutes (or a MP correction term)
but also a modified nonspecific solute cohesion parameter.
The latter is obtained either from experimental solubilities in
hydrocarbon solvents or is deduced by analogy to similar
compounds". Similar situations exist in the cases of
estimating free energy differences between crystal and liquid
states in the framework of COSMO-RS.

Because almost all drugs are solids, the problem of
calculating crystal lattice energies is important. Such direct
calculations are expensive and are still far from being
routine. Thus, a new approach was recently proposed to
avoid this problem [49]. The method combines Similarity
and QSAR concepts. It supposes that closely related
compounds have similar crystal structures. So the
solubilities of the nearest related structures are used as
starting points. Then additional solubility increments are
calculated for the compound-of-interest on the basis of
HYBOT descriptors and the following equation [49]:

         N
logSi = Σ [((logSj - 0.275(α i - α j) + 0.96 (Cai -Caj)

      j=1

–0.27(Cdi -Cdj)]/N (14)

The extracted results of such solubility calculations for
24 drugs studied in [49] are presented in Table 1.

The use of HYBOT descriptors to estimate aqueous
solubility is further supported by the work of McFarland et
al . [95,96]. They showed that quantitative H-bond



1046    Mini-Reviews in Medicinal Chemistry, 2004, Vol. 4, No. 10 Oleg A. Raevsky

descriptors along with logP, volume and partial atomic
charge terms are significantly correlated with water
solubility.

In concluding this section, it should be emphasized that
while development of the above mentioned approaches to
take crystal lattice energy into account has improved the
situation, a satisfactory method to calculate the aqueous
solubility of crystalline drugs has not been completely
decided.

INTESTINAL ABSORPTION

For the most part, orally administered drugs use the
intestinal epithelium for transport in the human organism.
There are at least four different routes of this type: (i) the
passive transcellular, (ii) paracellular, (iii) the carrier
mediated route and (iv) transcytosis [97,98]. A set of in vitro
experimental methods is used for detailed study of drug
transport in organisms. These include Caco-2 monolayers,
systems for evaluating metabolic susceptibility (employing
human liver microsomes, hepatocytes, and recombinant
P450 isozymes), and artificial membranes [99-103].
However, all of these methods are expensive. Thus, the
development of approaches to calculate and predict
permeability and intestinal absorption (in particular) are
desirable for drug design.

Three remarkable systematic investigations of the
contribution of physicochemical properties to permeability
levels were carried out during the middle 1990s. Based on
their analysis of World Drug Index data, Lipinsky et al.
[104] proposed that four physicochemical parameters are
significantly related to permeation: molecular weight, logP,
the number of H-bond donors and the number of H-bond
acceptors. They suggested "the Rule of 5". This rule declares
that poor drug absorption or permeation is more likely when
there are more than five H-bond donors (the count of OH and
NH groups), MW is over 500, logP is over 5, and there are
more than 10 (2 × 5) H-bond acceptors (the count of
nitrogen and oxygen atoms). Compounds that are substrates
for biological transporters were excluded from this
consideration. Waterbeemd et al. [105] discussed Caco-2 cell
permeability using calculated molecular descriptors
including volume-related parameters (molecular weight,
molecular volume, polar and nonpolar parts of surface area),
polarity terms (the number of H-bond donors and acceptors,
and H-bond donor and acceptor factors), and a few
physicochemical properties (logP, logD, and the difference
between the octanol/water and the alkane/water partition
coefficients). Using graphical and equation-based approaches,
they demonstrated that in combinations of appropriate size
H-bonding descriptors might be of potential use to estimate
membrane permeation. Winiwart et al. [106] studied the
effective permeability in the human jejunum (in vivo) as a
function of logD5.5, logD6.5, the highest occupied and
lowest unoccupied molecular orbital energies, dipole
moments, molecular weight, number of atoms, molecular
volume, molecular surface area, number of potential
hydrogen bond donors and potential hydrogen bond
acceptors, and polar surface area. In the framework of
multivariate data analysis, the best PLS models were
obtained in cases involving the number of hydrogen bond
donor atoms, polar surface area and logD5.5 or logD6.5.

Unfortunately, the two latter publications were based on
small training sets, and so their real predictive powers are
not likely reliable.

A non-linear six-descriptor neural network model based
on molecular properties was constructed for 86 drugs [107].
The descriptors were: the number of single bonds, the
normalized 2D projection of molecules on the YZ plane, the
charge on donor hydrogen atoms, the surface area of
hydrogen bond acceptor atoms, the charge on hydrogen bond
acceptor atoms, and the gravitational index. A similar work
for the same data is presented in recent publication [108].
Nitrogen with one or two hydrogen atoms, nitrogen with
three single bonds attached to heavy atoms, oxygen with one
hydrogen atom, oxygen with two single bonds attached to
heavy atoms, oxygen with one double bond attached to a
heavy atom, the number of rotatable bonds, and the number
of aromatic rings were recognized as significant descriptors
in this study. Quantum-chemical descriptors have also been
used [109] as well as a novel numerical molecular
representation called the "molecular hashkey" [110]. A non-
aqueous partitioning system has been proposed for the
prediction of oral peptide absorption [111].

The polar surface area (PSA) is now the most popular
descriptor for permeability at the whole cell level, and for
human intestinal absorption in particular [105, 112-123]. As
to the physical meaning, it is supposed that the polar groups
of a molecule are solvated in the intestine’s aqueous
environment, and the molecule’s entry to the more lipophilic
environment of the intestinal epithelium requires the
desolvation of those groups. This process is endothermic, so
absorption must be hindered. In this approach, the hydrogen
bond potential is expressed as the polar part of the molecular
surface area. The PSA of a molecule is defined as the area of
its van der Waals surface that arises from oxygen and
nitrogen H-bond acceptor atoms, and hydrogen atoms
attached to such atoms. Only a single conformation of a
molecule was taken into consideration in the first application
of the method [105,113]. Later, "dynamic" PSAd, which is a
Boltzmann-weighted average value calculated from a set of
low energy conformers, was proposed [114-118]. Because
detailed conformation searches for large molecules are slow
and expensive, Clark demonstrated that using a single low-
energy conformer as a representative of the ensemble of
conformers likely to be present in vivo is a reasonable
approximation [120-122]. As a result of correlating
absorption with polar surface area, the threshold of poor
absorption was estimated to be PSA≥140 A2 [120].
However, for some drugs there are significant deviations
from that rule. For example, pyridostigmine has a low PSA
value but is poorly absorbed [120]. One reason for this may
be that PSA is an imperfect descriptor. As an example, in
[119] to obtain a good correlation with Caco-2 permeability,
timolol’s calculated PSA value was "corrected" by omitting
the two weak H-bond acceptor nitrogens in the thiadiazole
ring. Thus, it seems that a more correct definition and
determination of polar surface area is necessary.

The application of thermodynamic H-bond parameters to
model human intestinal absorption is presented in [124-
126]. Data for 169 drugs were included in the analysis. The
descriptors in the solvation equations correlated directly with
the percentage of absorption [124]. In a recent publication
[124], for those drugs whose absorptions were neither 0 nor
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Table 2. New 3-D Hydrogen Bond Descriptors with Definitions [33,129]

WEASA = Σn ka Ea

Van der Waals’acceptor surface area in Å2 
which is proportional to H-bond enthalpy

factors Ea of acceptor atoms. n is number of acceptors in the molecule of interest.

k a   =
1 1
5 3

( S O ) . So is a surface sphere with a radius of 1.36 Å (Osp3)

WOFEASA = Σn kaCa(o ) Van der Waals’acceptor surface area in Å2 
which is proportional to H-bond overall free

energy factors Ca(o) of acceptor atoms.

WEDSA = Σn k d E d

Van der Waals donor surface area in Å2 
which is proportional to H-bond enthalpy factors of

donor atoms.n is number of donors in a molecule, k d   = 1 1
5 3

( S H ) , SH is a surface

sphere with a radius of 1.08 Å (H atom).

WFEDSA = Σ
n

k d C d Van der Waals donor surface area in Å2 
which is proportional to H-bond free energy

factors of donor atoms.

OEASAprobe = Σn ka(Hd )EaEd (probe)
Surface area around a molecule in Å2 where interactions of acceptor atoms of a molecule

with a H-bond donor probe have been optimumly placed and which is proportional to
product of H-bond enthalpy factor absolute values of those atoms. Ed(probe) is the enthalpy

factor of the probe H-bond donor, k a
1 1
20 3

( S rm ), Srm is the surface area of sphere

with a radius of rm = 2.45 Å for the strongest H-bonding

OEASAprobe = Σn ka(Hd )EaEd (probe)
Surface area around a molecule in Å2 where interactions of acceptor atoms of a molecule
with H-bond donor probe have been optimumly placed and which is proportional to product

of H-bond free energy factor absolute values of those atoms.

OEDSAprobe = Σ
n

kd (Ha )Ed Ea(probe)
Surface area in Å2 around a molecule where interactions of donor atoms of a molecule with
H-bond acceptor probe have been optimumly placed and which is proportional to product of

its H-bond enthalpy factor absolute values.

OFEDSAprobe = Σn kd (Ha )Cd Ca(o)probe) surface area in Å2 around a molecule where interactions of donor atoms of a molecule with
H-bond acceptor probe have been optimumly placed and which is proportional to product of

its H-bond free energy factor absolute values.

φSIEAprobe = H   d (s). surface integral for enthalpy values (kcal/M*Å2) of interactions between acceptor atoms of
a molecule and a donor probe on the surface OEASA .

φSIEDprobe = H   d (s) surface integral for enthalpy values (kcal/M*Å2) for interactions between donor atoms of a
molecule and an acceptor probe on the surface OEDSA

100%, regression analysis on the effective rate of absorption
(GI keff) led to the following equation:

log GI keff = 0.544-0.025 E +0.141 S – 0.409 A – 0.513 B
+ 0.204 V (15)

N=127, R=0.89, s=0.29, F=0.84

This approach was applied also to benzamidine analog
inhibitors [126].

HYBOT descriptors were used to quantitatively estimate
the oral drug absorption in humans for 31 passively
transported drugs [127]. For the first time, the ionization
states of the compounds at physiological pH were taken into
account in calculating physicochemical descriptors. The
authors also discussed the relationship between descriptors
and published absorption data: linear [114,117,125]
compared to sigmoid relationships [105,115, 117, 120].
Data presented as percentage effect or fractional effect (i.e.
fraction absorbed, FA) are problematic in linear regression
techniques. For example, linear models correlating FA data
directly with physicochemical descriptors can predict
negative FA values or FA values greater than 1 (i.e. >
100%). However, this difficulty may be overcome by
transforming the FA values into logit FA values [128]:

logit FA = log (FA/(1-FA) (16)

In spite of good correlation coefficients and standard
deviations, cross-validation coefficients (Q) were not
satisfactory for correlating logit FA with the independent
variables (for the use of logit FA see also [123]). This
caused the authors to consider empirical non-linear models
for estimating relationships between FA and
physicochemical parameters. For this purpose eq. (16) was
rewritten as:

Z = logit FA = log [FA/(1-FA) (17)

FA/(1-FA) = 10Z (18)

FA= 10Z / (1+10Z ) (19)

FA=1/(1+ 10 –Z ) (20)

where Z =F(X1,X2,……Xi).

This non-linear approach led to ∑Cad as being the best
descriptor for a one-parameter equation:

FA=1/(1+10 – [5.02 - 0.307 ∑Cad]) (21)

N=31, R=0.943, s=0.12, Q=0.918

This term is the sum of absolute free energy values of H-
bond acceptor and donor factors in the molecule, and
characterizes the total ability of a compound to form
hydrogen bonds. The equation shows that compounds with
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Fig. (1). Graphical comparison of number of acceptor atoms in a molecule and overall free energy factors.

∑Cad values < 8 are completely absorbed in humans. In
cases where ∑Cad ≅  16, the FA values are approximately
equal to 0.5. Absorption is poor in the cases where ∑Cad >
22. In the sigmoid model, descriptors that gave poorer
results included molecular weight and polarizability as
volume-related terms, partial charges on atoms as
electrostatic terms and logD as a lipophilicity term.
Separating the composite descriptor ∑Cad into the H-bond
acceptor and donor components, ∑Ca and ∑Cd, significantly
improved the correlation:

FA=1/(1+10 –[5.05 - 0.36 ∑Ca + 0.26 ∑Cd]) (22)

N=31, r=0.974, s=0.09, Q=0.959

Addition of other non-correlated descriptors had only
weak influences on the results. Eq.(22) demonstrates that
hydrogen bonding is a key factor in absorption processes.

Recently, this study was significantly improved by using
a training set of 154 passively transported drugs, and by
employing a larger set of descriptors [33]. The descriptor set
included the following 2-D properties: MW, molecular
polarizability (α), number of H-bond acceptor atoms (Na) in
a molecule, number of H-bond donor atoms (Nd), H-bond
acceptor (Ea) and H-bond donor (Ed) enthalpy factors, H-
bond acceptor (Ca) and H-bond donor (Cd) free energy
factors, and logP. The 3-D descriptors were SAREA, PSA,
and 10 new descriptors based on new H-bond potentials [33,
129]; these are defined in Table 2. The correlation matrix
showed that almost all of these descriptors are significantly
intercorrelated. High levels of correlation exist not only
among H-bond acceptor descriptors, and among H-bond
donor descriptors, but also between H-bond acceptor and
donor descriptors. There is a significant correlation between
molecular weight (MW) and the number of H-bond acceptor

and donors. Such a correlation could be explained by
tendency for the number of chemical functional groups to
increase with molecular size. LogP values correlate
significantly with number of H-bond donor groups in the
molecule. LogP is a composite descriptor that includes, in
hidden form, information about molecular size and H-bond
acceptor ability. Under such conditions, the simultaneous
consideration of molecular weight, the number of H-bond
donors and acceptors and logP as presented in the "Rule 5"
[104] possibly masks the real relationship between structure
and absorption.

In the framework of one parameter sigmoid models H-
bond descriptors demonstrated obvious advantages when
compared to the volume-related terms (SAREA,
polarizability) and lipophilicity (logP). These correlations
show that H-bond acceptor ability and H-bond donor ability
play significant roles in absorption. For absorption,
equations with the best statistical criteria for a training set
containing 154 drugs were obtained with the composite
descriptors WEASA+WEDSA (n=154, r=0.89, s=0.16,
F=507.4), WOFEASA+WFEDSA (n=154, r=0.91, s=0.15,
F=734.7), OEASA+OEDSA (n=154, r=0.90, s=0.16,
F=627.0) and OFEASA+OFEDSA (n=154, r=0.91, s=0.15,
F=738.5). These descriptors quantitatively characterize the
total ability of a drug to participate in hydrogen bonding.

The composite indicator descriptor Nad (recently used
with logP to calculate the human intestinal absorption of
124 drugs [130]) and PSA (recently used with logP in a
pattern recognition model [131]) give enough good
correlation with human intestinal absorption. These
descriptors are obtained respectively by counting the number
of atoms in a molecule that can (in principle) participate in
hydrogen bonding, and by calculating the van der Waals
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Fig. (2). Graphical comparison of 3D-HYBOT descriptors and PSA for 154 drugs.

surface for oxygen, nitrogen and hydrogens at those
heteroatoms. The statistical parameters for models with
those descriptors are only a little worse than those based on
thermodynamic descriptors. There are strong intercorrelations
among those descriptors. However, a comparison of values
between these two types of descriptors shows that for any
fixed number of H-bond acceptors and donors there are wide
ranges of thermodynamic descriptor values (see Fig. 1). And
PSA as descriptor doesn’t reflect real ability to form H-
bonds (graphical comparison PSA and 3D HYBOT
descriptors are presented in Fig. 2). Hence, to estimate
human intestinal absorption, Nad and PSA are only crude
preliminary instruments. The proper estimation of intestinal
absorption is really only possible on the basis of descriptors
that directly relate to thermodynamic data.

The probability of different mechanisms of absorption
hinders the construction of QSAR for diverse chemicals and
drugs. A novel approach based on the Similarity concept and
QSAR was recently proposed to predict intestinal absorption
in humans [132]. The approach is based on the assumption
that nearest related structures (nrs) have the same absorption
mechanisms. For each pair compared, the difference in
absorption values is related to the differences in the
physicochemical parameters that contribute in passive
transport. As example, a set of ten β-lactams was considered
(Table 3 in [132]). All of these compounds have strong H-
bond acceptor and donor groups. If these drugs relied solely
on passive transport, they would all be poorly absorbed. The
last four compounds from this list are in fact poorly
absorbed. However, cephalexin and five related structures
contain the group –CH(NH3+)Ph, which is associated with

active transport. Despite the strong H-bond donor strength of
these compounds, each is almost completely absorbed
because of this special mechanism. The Tanimoto, Euclidean
and Cosine similarity indices allow one to readily select
related compounds. The final absorption calculation in the
framework of this approach is carried out by means of eq
(23):

FA=1/(1+10[(-log(FAnrs/(1-FAnrs))- 0.36∆∑Ca(drug-nrs)+ 0.26
∆∑Cd(drug-nrs)]) (23)

Eq. (23) was used to calculate the absorption of 100
drugs including 38 neutral compounds, 29 cations, 20
anions and 13 zwitterions. At pH 7.4, the ionization state of
the drugs was taken into account. The correlation between
the experimental and calculated absorption values had almost
a zero intercept and good statistics parameters (n=100,
r=0.945, s=0.11, Q=0.943). Using eq. (22) gave much
worse results (n=100, r=0.740, s=0.23, Q=0.719). This
approach was used in the program SLIPPER–2001 [49] to
predict lipophilicity, aqueous solubility and intestinal
absorption in humans. The results of calculations for 24
drugs are presented in Table 1.

ORAL BIOAVAILABILITY

Oral administration is the preferred way to insert a drug
in humans. The fraction of the drug dose absorbed intact
depends not only on epithelial permeability but also on
other processes. Of course, membrane permeation is
recognized as a common requirement for oral bioavailability.
Thus, all of the already estimated relationships between
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physicochemical descriptors and intestinal absorption may
be useful for studies of structure-bioavailability
relationships. However, many other factors are now
recognized as limiting oral bioavailability. These include
energy-driven export from blood to gut, and first pass
metabolism by enzymes of intestinal or liver cells.
Bioavailability is a global parameter that incorporates many
permeability and transport processes [123]. So contrary to
simple correlations (for example, MW with bioavailability
[133]) it is possible that the relationship between
physicochemical descriptors and this complex phenomenon
may also be complex. Structure-bioavailability relationships
studies are only beginning to be developed. In this short
review it is possible only to mention two recent
publications. The structure-bioavailability relationships
among 232 structurally diverse drugs were studied [134].
The oral bioavailabilities in human adults were each
assigned to one of four ratings, and analyzed in relation to
structural and physicochemical parameters by means of a
multicategorical classification method using a simplex
technique. The set of descriptors included logD7.4, logD6.5,
and their difference as well as structure fragments that might
participate in various metabolic reactions. Although the
predictive power of the model was rather modest (only 60%
of drugs were correctly classified), the development of this
approach seems promising. It is possible that an approach
based on combining Similarity and QSAR [49] could be
also useful to model these complex phenomena.

The oral bioavailabilities in rats were included in a
structure-property analysis of over 1100 compounds [135].
Molecular flexibility, as measured by the number of
rotatable bonds, and polar surface area (or total hydrogen
bond count, sum of donor and acceptor groups) were
recognized to be important predictors of oral bioavaolability.
No significant influence of molecular weight was discovered.
This conclusion must be considered only as an estimated
trend because of the above-indicated critique of PSA and the
number of H-bond donors and acceptors as descriptors. Its
application to structure-bioavailability relationships in
humans is problematic.
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THE LIST OF ABBREVIATIONS

ADMET = Absorption, distribution, metabolism, 
excretion and toxicity

QSAR = Quantitive structure-activity relationships

QSPR = Quantitative Structure-property relationships

n = Number of compounds

R = Correlation coefficient

sd = Standard deviation

RMS = Root-mean-square error

F = Fisher criterion

logP = Partition coefficient (P) of a compound distri-
buted between octanol and water phases is 
expressed as logP, its logarithmic form

logS = Water solubility, its logarithmic form

FA = Fraction absorbed

E = Excess molar refraction

S = Solute polarity/polarizability

A = Solute H-bond acidity

B = Solute H-bond basicity

V = McGowan characteristic molar volume

∆B = Differences between the two phases in the 
entropy of the solute/solvent exchange

∆F = Hydrophobic effect- term, the two H-bond 
interaction-related terms

∆O and = Differences in the strengths of the H-bonds
∆OH that bind the solute and solvent molecules in 

each phase
∆D = Accounts for nonspecific forces only

α = Molecular polarizability

MW = Molecular volume

∑q = Sum of partial atomic charges in a molecule

∑E = Enthalpy H-bonding factors

∑C = Free energy H-bonding factors

PSA = Polar surface area

MP = Melting point

GSE = General solubility equation

HYBOT = Hydrogen bond thermadynamics
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